Abstract

Background & AimsCurrent standard-of-care suppresses HBV replication, but does not lead to a functional cure. Treatment aiming to cure chronic hepatitis B (CHB) is believed to require the induction of strong cellular immune responses, such as by therapeutic vaccination.MethodsWe designed a therapeutic HBV vaccine candidate (YF17D/HBc-C) using yellow fever vaccine YF17D as a live-attenuated vector to express HBV core antigen (HBc). Its ability to induce potent cellular immune responses was assessed in a mouse model that supports flavivirus replication.ResultsFollowing a HBc protein prime, a booster of YF17D/HBc-C was found to induce vigorous cytotoxic T cell responses. In a direct head-to-head comparison, these HBc-specific responses exceeded those elicited by adenovirus-vectored HBc. Target-specific T cells were not only more abundant, but also showed a higher degree of polyfunctionality, with HBc-specific CD8+ T cells producing interferon γ and tumour necrosis factor α in addition to granzyme B. This immune phenotype translated into a superior cytotoxic effector activity toward HBc-positive cells in YF17D/HBc-C vaccinated animals in vivo.ConclusionsThe results presented here show the potential of YF17D/HBc-C as a vaccine candidate to treat CHB, and warrant follow-up studies in preclinical animal models of HBV persistence in which other candidate vaccines have been unable to achieve a sustained virologic response.Lay summaryResolution of CHB requires the induction of strong cellular immune responses. We used the yellow fever vaccine as a vector for HBV antigens and show that it is capable of inducing high levels of HBV-specific T cells that produce multiple cytokines simultaneously and are cytotoxic in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call