Abstract

Recently DNA aptamers have attracted remarkable attention as possible targeting ligands since selective targeting of cancer cells is a critical step in cancer diagnosis and therapy. Here, the development of AS1411 aptamer-functionalized albumin nanoparticles loaded on iron oxide and gold nanoparticles is reported for target delivery of the well-known anticancer drug of doxorubicin (Dox). Iron oxide nanoparticles (IONPs) and gold nanoparticles (GNPs) were prepared by ultrasound-assisted and controlled seeded growth synthetic methods, respectively. The nanocarrier was synthesized by a desolvation cross-linking method and characterized by dynamic light scattering, zeta potential measurement, thermogravimetric analysis, transmission electron microscopy, as well as vibrating sample magnetometer. The synthesized nanoparticles were found to be spherical with an average diameter of 120 nm and zeta potential of about −50.3 mV. The in-vitro anti-tumor effect of the designed delivery vehicle on MCF7 and SKBR3 human cancer cells was evaluated by MTT assay. The experimental results revealed that it could significantly inhibit the proliferation of cancerous cells. Moreover, GNPs and IONPs with the coating of albumin did not show any toxicity. AS1411 aptamer-functionalized nanoparticles improved cellular uptake and efficiency to MCF7 breast cancer cells as compared to non-targeting nanoparticles because of the high affinity of mentioned aptamer toward the overexpressed nucleolin on MCF7 cell surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.