Abstract

BackgroundSpatial patterning specifies neural progenitor identity, with further diversity generated by temporal patterning within individual progenitor lineages. In vertebrates, these mechanisms generate “cardinal classes” of neurons that share a transcription factor identity and common morphology. In Drosophila, two cardinal classes are Even-skipped (Eve)+ motor neurons projecting to dorsal longitudinal muscles, and Nkx6+ motor neurons projecting to ventral oblique muscles. Cross-repressive interactions prevent stable double-positive motor neurons. The Drosophila neuroblast 7–1 (NB7–1) lineage uses a temporal transcription factor cascade to generate five distinct Eve+ motor neurons; the origin and development of Nkx6+ motor neurons remains unclear.MethodsWe use a neuroblast specific Gal4 line, sparse labelling and molecular markers to identify an Nkx6+ VO motor neuron produced by the NB7–1 lineage. We use lineage analysis to birth-date the VO motor neuron to the Kr+ Pdm+ neuroblast temporal identity window. We use gain- and loss-of-function strategies to test the role of Kr+ Pdm+ temporal identity and the Nkx6 transcription factor in specifying VO neuron identity.ResultsLineage analysis identifies an Nkx6+ neuron born from the Kr+ Pdm+ temporal identity window in the NB7–1 lineage, resulting in alternation of cardinal motor neuron subtypes within this lineage (Eve>Nkx6 > Eve). Co-overexpression of Kr/Pdm generates ectopic VO motor neurons within the NB7–1 lineage – the first evidence that this TTF combination specifies neuronal identity. Moreover, the Kr/Pdm combination promotes Nkx6 expression, which itself is necessary and sufficient for motor neuron targeting to ventral oblique muscles, thereby revealing a molecular specification pathway from temporal patterning to cardinal transcription factor expression to motor neuron target selection.ConclusionsWe show that one neuroblast lineage generates interleaved cardinal motor neurons fates; that the Kr/Pdm TTFs form a novel temporal identity window that promotes expression of Nkx6; and that the Kr/Pdm > Nkx6 pathway is necessary and sufficient to promote VO motor neuron targeting to the correct ventral muscle group.

Highlights

  • Neural diversity from flies to mice arises from two major developmental mechanisms

  • We show that overexpression of Kr/Pdm together, or Nkx6 alone, generates ectopic ventral oblique (VO) motor neurons based on molecular marker expression

  • The neuroblast 7–1 (NB7–1) lineage has a Kr+ Pdm+ temporal identity window that generates an Nkx6+ motor neuron The existence of a Kr+ Pdm+ temporal identity window had been predicted by computational methods [20], so we sought to confirm this in vivo using a previouslycharacterized highly-specific NB7–1 split gal4 line (NB7–1-gal4 [21]) to express UAS-myr:GFP in NB7–1 and its progeny (Fig. S1, Fig. 1a-d)

Read more

Summary

Introduction

Neural diversity from flies to mice arises from two major developmental mechanisms. First, neural progenitors acquire a unique and heritable spatial identity based on their position along the rostrocaudal or dorsoventral body axes [1, 2]. Temporal patterning is best characterized in Drosophila; neural progenitors (neuroblasts) located in the ventral nerve cord, central brain, and optic lobes all undergo temporal patterning, in which the neuroblast sequentially expresses a cascade of TTFs that specify distinct neuronal identities [3,4,5,6]. Spatial patterning specifies neural progenitor identity, with further diversity generated by temporal patterning within individual progenitor lineages. In vertebrates, these mechanisms generate “cardinal classes” of neurons that share a transcription factor identity and common morphology. The Drosophila neuroblast 7–1 (NB7–1) lineage uses a temporal transcription factor cascade to generate five distinct Eve+ motor neurons; the origin and development of Nkx6+ motor neurons remains unclear. We use gain- and loss-of-function strategies to test the role of Kr+ Pdm+ temporal identity and the Nkx transcription factor in specifying VO neuron identity

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call