Abstract

A novel strengthening scheme for seismically-weak RC frames is proposed which utilizes external steel caging to improve flexural/shear strength of columns and aluminum shear-yielding damper ( Al-SYD) to further enhance lateral strength, stiffness and overall energy dissipation capacity of the frame. This paper describes the effectiveness of this scheme as evidenced in an experimental study on a reduced scale (1:2.5) single-story, single-bay, gravity-only designed reinforced concrete (RC) frame. The strengthened frame was simultaneously subjected to gravity loads and reversed cyclic lateral displacements as per ACI-374 loading protocol. An innovative connection scheme was designed to transfer a portion of frame lateral load to the energy dissipation device ( Al-SYD). Besides the significant increase in lateral strength and stiffness of the strengthened frame, RC frame members did not suffer any major damage during the entire test protocol. This indicates significant reduction in force demand on existing RC members because of enhanced energy dissipation through hysteretic shear yielding of aluminum panels. Moreover, the simple connection scheme proposed in this study proved very efficient in transferring the frame lateral load to strengthening elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call