Abstract

A new process for the production of bioethanol from paper mill sludge (PMS) is described in this work. PMS biomass feedstock was processed via the simultaneous saccharification and fermentation (SSF) with and without accelerants. The enzymatic hydrolysis and fermentation were first evaluated, and the energy demand was 2.2 MJ/L of produced ethanol. When the enzymatic hydrolysis and fermentation were combined, the energy demand was reduced to 1.0 MJ/L ethanol, the sugars production increased, and the overall capital cost of the process decreased. The sugar yield was improved by adding accelerant and selecting the optimal fiber recovery method. The accelerant improved the enzymatic hydrolysis via a pathing/bridging mechanism. The SSF with the chemical fiber recovery method coupled with accelerant addition would be the best process configuration. Upon this combination, the glucose profile was enhanced from 9.8 g/L to 17.0 g/L. The sludge fiber conversion by SSF was improved by selecting an efficient fiber recovery method combined with the accelerant addition. SSF in chemical fiber recovery with accelerant addition was the best process by a 10% improvement of ethanol yield. The proposed process configuration offers a lower cost and sustainable process and contributes to the circular economy of zero waste discharges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call