Abstract

Fabless semiconductor industry and government agencies have raised serious concerns about tampering with inserting hardware Trojans in an integrated circuit supply chain in recent years. Most of the recently proposed Trojan detection methods are based on Trojan activation to observe either a faulty output or measurable abnormality on side-channel signals. Time to activate a hardware Trojan circuit is a major concern from the authentication standpoint. This paper analyzes time to generate a transition in functional Trojans. Transition is modeled by geometric distribution and the number of clock cycles required to generate a transition is estimated. Furthermore, a dummy scan flip-flop insertion procedure is proposed aiming at decreasing transition generation time. The procedure increases transition probabilities of nets beyond a specific threshold. The relation between circuit topology, authentication time, and the threshold is carefully studied. The simulation results on s38417 benchmark circuit demonstrate that, with a negligible area overhead, our proposed method can significantly increase Trojan activity and reduce Trojan activation time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call