Abstract

AbstractIn this work a transmission electron microscopy (TEM) technique was used in obtaining local dielectric properties calculated from optical parameters for dynamic investigation of the effect of cubic to tetragonal phase transformation in barium titanate. In order to obtain in situ local dielectric during phase transformation, Kramers-Kronig relations were applied using the transmission electron energy loss (EELS) measurements. The optical excitations in the EELS spectra were consistent with the band structure results. The Re (1/ε) (real part of the dielectric function) obtained from the energy loss data indicated a change at the phase transformation. A broadening of the valence plasmon excitation suggested an order-disorder nature to the cubic to tetragonal transformation. In situ electron energy loss near edge structure (ELNES) studies from 500–700 eV energy range near the O-K edge exhibited a pre-edge feature that is associated with the Ti-L1, edge which further indicates an order-disorder nature to the phase transformation. The significance of the results is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call