Abstract

Task scheduling, which plays a crucial role in cloud computing and is the critical factor influencing the performance of cloud computing, is an NP-hard problem that can be solved with a heuristic algorithm. In this paper, we propose a novel heuristic algorithm, called biogeography-based optimization (BBO), and a new hybrid migrating BBO (HMBBO) algorithm, which integrates the migration strategy with particle swarm optimization (PSO). Both methods are proposed to solve the problem of scheduling-directed acyclic graph tasks in a cloud computing environment. The basic idea of our approach is to exploit the advantages of the PSO and BBO algorithms while avoiding their drawbacks. In HMBBO, the flight strategy under the BBO migration structure is hybridized to accelerate the search speed, and HEFT_D is used to evaluate the task sequence. Based on the WorkflowSim, a comparative experiment is conducted with the makespan of task scheduling as the objective function. In HMBBO, the flight strategy under the BBO migration structure is hybridized to accelerate the search speed, and HEFT_D is used to evaluate the task sequence. Based on the WorkflowSim, a comparative experiment is conducted with the makespan of task scheduling as the objective function. Both simulation and real-life experiments are conducted to verify the effectiveness of HMBBO. The experiment shows that compared with several classic heuristic algorithms, HMBBO has advantages in terms of global search ability, fast convergence rate and a high-quality solution, and it provides a new method for task scheduling in cloud computing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.