Abstract

Task scheduling is one of the most challenging aspects to improve the overall performance of cloud computing and optimize cloud utilization and Quality of Service (QoS). This paper focuses on Task Scheduling optimization using a novel approach based on Dynamic dispatch Queues (TSDQ) and hybrid meta-heuristic algorithms. We propose two hybrid meta-heuristic algorithms, the first one using Fuzzy Logic with Particle Swarm Optimization algorithm (TSDQ-FLPSO), the second one using Simulated Annealing with Particle Swarm Optimization algorithm (TSDQ-SAPSO). Several experiments have been carried out based on an open source simulator (CloudSim) using synthetic and real data sets from real systems. The experimental results demonstrate the effectiveness of the proposed approach and the optimal results is provided using TSDQ-FLPSO compared to TSDQ-SAPSO and other existing scheduling algorithms especially in a high dimensional problem. The TSDQ-FLPSO algorithm shows a great advantage in terms of waiting time, queue length, makespan, cost, resource utilization, degree of imbalance, and load balancing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.