Abstract

In this paper, a novel process for the production of pure hydrogen from natural gas based on the integration of solid oxide fuel cells (SOFCs) and solid oxide electrolyzer cells (SOECs) is presented. In this configuration, the SOFC is fed by natural gas and provides electricity and heat to the SOEC, which carries out the separation of steam into hydrogen and oxygen. Depending on the system layout considered, the oxygen available at the SOEC anode outlet can be either mixed with the SOFC cathode stream in order to improve the SOFC performance or regarded as a co-product. Two configurations of the cell stack are studied. The first consists of a stack with the same number of SOFCs and SOECs working at the same current density. In this case, since in typical operating conditions the voltage delivered by the SOFC is lower than the one required by the SOEC, the required additional power is supplied by means of an electric grid connection. In the second case, the electricity balance is compensated by providing additional SOFCs to the stack, which are fed by a supplementary natural gas feed. Simulations carried out with Aspen Plus show that pure hydrogen can be produced with a natural gas to hydrogen LHV-efficiency that is about twice the value of a typical water electrolyzer and comparable to that of medium-scale reformers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.