Abstract

Nickel-rich cathode materials have attracted considerable interest because of their high specific capacities, voltage ranges, and low cost. However, serious capacity attenuation and poor rate performance limit their application. This study proposes a novel strategy to improve the cycle stability of the nickel-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) layer material by designing core-shell LiNi0.8Co0.1Mn0.1O2 (CS-NCM811). CS-NCM811 is designed by the characteristic reaction between dimethylglyoxime (C4H8N2O2) and nickel ion to form Ni(C4H7N2O2)2. The CS-NCM811 is characterized with high nickel content in its core and high manganese content on its surface, leading to a high capacity and excellent cycle stability. The capacity retention of CS-NCM811 was 72.8%, much higher than that of NCM811 (47.1%) after 500 cycles at a rate of 5 C. Not only is this method a novel strategy to design high capacity cathode materials but also provides some new insights into the cycle stability of nickel-rich layered cathode materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.