Abstract

Graphene nanoscrolls which could overcome the chirality dependence of metallic or semiconducting behavior in carbon nanotubes have been recently investigated and proposed for a wide variety of applications. In order to further improve their practical applications, a variety of synthetic approaches have been widely explored but with various limitations. For instance, it remains challenging to produce graphene nanoscrolls with tunable dimensions and high quantity, which greatly hinders their potential applications. Herein, we report a new and general approach to synthesize graphene nanoscrolls with accurately tunable widths and lengths at a large scale. The resulting high-quality graphene nanoscrolls show promising applications in a wide variety of electronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call