Abstract

A novel synergistic effect of TiO2 and ZnO incorporation in the PES-based thin-film nanocomposite nanofiltration membranes was developed for the treatment of common effluent treatment plant (CETP) textile wastewater. PES@TiO2 membranes were developed by phase inversion via the immersion precipitation method followed by the addition of zinc oxide nanoparticles prepared by the rapid microwave-assisted hydrothermal process via interfacial polymerization. p-Phenylenediamine was used as a monomer for the IP process that was coated on the PES@TiO2 support layer. Various techniques have been applied to characterize the developed thin-film nanocomposite membranes such as Fourier transform infrared (FTIR) microscopy, field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), and contact angle measurement to examine the presence of vibrational modes, surface morphology, the crystal structure of nanoparticles, and hydrophilicity of the membrane, respectively. Membrane properties include porosity, salt rejection, mean pore radius, pure water flux, and industrial effluent rejection efficiency that were studied. The thin-film nanocomposite membrane T5-PES@TiO2(2%)-ZnO(0.3%) was prepared with a combination of 17 wt% PES, 78 wt% DMF, 3 wt% PVP K30, 2% TiO2, 2.5 wt% PPD, 0.3 wt% ZnO, and 1.0 wt% TMC that exhibited high water permeability, porosity, higher industrial effluent rejection, and salt rejection efficiency compared to the neat PES membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call