Abstract

Normal support vector machine (SVM) algorithms are not suitable for classification of large data sets because of high training complexity. This paper introduces a novel SVM classification approach for large data sets. It has two phases. In the first phase, an approximate classification is obtained by SVM using fast clustering techniques to select the training data from the original data set. In the second phase, the classification is refined by using only data near to the approximate hyper plane obtained in the first phase. Experimental results demonstrate that our approach has good classification accuracy while the training is significantly faster than other SVM classifiers. The proposed classifier has distinctive advantages on dealing with huge data sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.