Abstract

High-resolution and high-squint spaceborne spotlight synthetic aperture radar (SAR) has significant potential for extensive application in remote sensing, but its swath width effectiveness is constrained by a critical factor: severe range cell migration (RCM). To address this, pulse repetition interval (PRI) variation offers a practical scheme for raw data reception. However, the current designs for continuously varying PRI (CV-PRI) exhibit high complexity in engineering. In response to the issue, this paper proposes a novel strategy of stepwise varying PRI (SV-PRI), which demonstrates higher reconstruction accuracy compared with CV-PRI. Furthermore, confronting the azimuth non-uniform sampling characteristics induced by the PRI variation, this paper introduces a complete uniform reconstruction processing based on the azimuth partitioning methodology, which effectively alleviates the inherent contradiction between resolution and swath width. The processing flow, utilizing the temporal point remapping (TPR) concept, ensures the uniformity and coherence of dataset partitioning and reassembly in the context of the interpolation on non-uniform grids. Finally, according to the simulation results, the point target data, processed through the processing flow proposed in this study, have demonstrated effective focusing results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.