Abstract

In the motor drive system of electric vehicles, there are some nonlinear factors, such as the deadtime and the conduction voltage drop of switching devices, which will generate low-order harmonics of the stator current and the torque ripple. The frequency of the harmonic may coincide with the natural frequency of the motor, so resonance may occur on the motor drive system. To reduce the noise caused by motor resonance, the characteristics of harmonic distortion caused by the deadtime, and the conduction voltage drop of the switching device, are analyzed firstly. Then, a motor vector control strategy with specific low order is proposed. The sixth-order harmonic resonance controller in d-q axis is introduced into the control loop, and the parameter designing principle of the controller is also presented. Without affecting the control performance of the current loop, the sixth-order harmonic of the stator current near the natural frequency can be significantly suppressed. Finally, the simulation and the experiment are carried out to certify the correctness and effectiveness of the proposed harmonic suppression method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call