Abstract

The importance of SULF1 in modulating the activities of multiple signalling molecules is now well established. Several studies, however, reported little or no effect of Sulf1 null mutations, questioning the relevance of this gene to in vivo development. The failure of SULF1 deletion to influence development may be predicted if one considers the involvement of a naturally occurring SULF1 antagonist, generated by alternative splicing of the same gene. We demonstrate that while the previously described SULF1 (SULF1A) enhances Wnt signalling, the novel shorter isoform (SULF1B) inhibits Wnt signalling. Our studies show developmental stage specific changes in the proportions of SULF1A and SULF1B isoforms at both the mRNA and protein levels in many developing tissues, with particularly pronounced changes in developing and adult blood vessels. Unlike SULF1A, SULF1B promotes angiogenesis and is highly expressed in endothelial cells during early blood vessel development while SULF1A predominates in mature endothelial cells. We propose that the balance of two naturally occurring SULF1 variants, with opposing functional activities, may regulate the overall net activities of multiple secreted factors and the associated signalling cascades essential for normal development and maintenance of most tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.