Abstract
Winglet tips are promising candidates for future high-pressure turbine rotors. Many studies found that the design of the suction-side winglet is the key to the aerodynamic performance of a winglet tip, but there is no general agreement on the exact design philosophy. In this paper, a novel suction-side winglet design philosophy in a turbine cascade is introduced. The winglets are obtained based on the near-tip flow field of the datum tip geometry. The suction-side winglet aims to reduce the tip leakage flow particularly in the front part of the blade passage. It is found that on the casing endwall, the pressure increases in the area where the winglet is used. This reduces the tip leakage flow in the front part of the blade passage and the pitchwise pressure gradient on the endwall. As a result, the size of the tip leakage vortex reduces. A surprising observation is that the novel optimized winglet tip design eliminates the passage vortex and results in a further increasing of the efficiency. The tip leakage loss of the novel winglet tip is 18.1% lower than the datum cavity tip, with an increase of tip surface area by only 19.3%. The spanwise deflection of the winglet due to the centrifugal force is small. The tip heat load of the winglet tip is 17.5% higher than that of the cavity tip. Numerical simulation shows that in a turbine stage, this winglet tip increases the turbine stage efficiency by 0.9% mainly by eliminating the loss caused by the passage vortex at a tip gap size of 1.4% chord compared with a cavity tip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.