Abstract

Transformers are complex devices consisting of an iron core around which are wrapped various coils of insulated wires, inside a tank filled with insulating oil, along with connectors, bushings and various other small components. Overloading causes excess heat in a transformer, the negative effects of which are degradation of the kraft paper insulation around the wires (leading to internal failures of the coils), excessive tank pressure or degradation of the insulating oil (either of which can cause catastrophic failures, even explosions), and leaking gaskets and seals. (Since the copper used in the windings is already soft (annealed) and is not under tension, overheating of the conductors is generally not a concern.) Thermal cycling contributes to mechanical damage by loosening connections. Because of hysteresis in the transformer core, overloading generates harmonics and these can cause mechanical vibration of the transformer, contributing to physical damage. Overloading also assumes that faults near the transformer, when they occur, will be greater than normal, so there is the increased likelihood of damage to the transformer from fault currents; such damage can be manifested by coil failures, bushing flashovers, blown gaskets and seals, connector failures, oil explosions and fires, and physical displacement of internal components due to electromechanical torques. In addition, the world consumes millions of barrels of oils to cover the electrical losses, which then produces green house gases. With the introduction of new method for loss reduction, authors found a new method that is presented in this paper. In this paper we assess the impact of losses on final cost of transformer and green house gases. It is proved that losses cost is equal to the capital investment of the transformer. Emissions of CO2 in the electrical network is 0.4 kg CO2 kWh−1, which is (11 500 billion kilowatts hours of electricity produced) around 46 billion tons of transformer losses. This can be reduced to 23 billion ton using loss management. It is obvious that to cover losses generation of extra electricity is needed. Extra production leads to more CO2 emission. Installation of CO2 capturing device utilities at least can prevent more pollution emissions. For these reasons, a CO2 capturing condenser applicable in power station is presented here. It was simulated using COMSOL software. Copyright © 2008 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call