Abstract

Matrix metalloproteinases (MMPs) are endopeptidases responsible for degrading the extracellular matrix (ECM) and remodeling tissue in both physiological and pathological processes. MMP2 and membrane-type 1 MMP (MT1-MMP) have been associated with tumor invasion, metastasis and angiogenesis; therefore, a molecular imaging strategy assessing their activity may help to predict the malignancy of tumors. Here, we established a novel method of specifically tagging the surface of MMP2- and MT1-MMP-positive cells, and applied it to the development of an optical imaging probe. We constructed a protein-based probe composed of a glutathione-S-transferase (GST)-tag (Inhibitory [I]-domain), a polypeptide as a specific substrate for both MMP2 and MT1-MMP (Cleaved [C]-domain), a transmembrane domain of the epidermal growth factor receptor (Transmembrane [TM]-domain), and DsRed2 (Fluorescent [F]-domain). In vitro experiments clearly demonstrated that, after the probe was cleaved at the C-domain by the MMPs, the resultant TM–F-domain was inserted into the cellular membrane. Optical imaging experiments in vivo demonstrated that the probe was cleaved and specifically remained in tumor xenografts in a MMP-dependent manner. These results indicate that the release of the I–C-domain through the proteolytic cleavage of the C-domain by MMP2 and MT1-MMP triggers the tagging of cellular membranes with the TM–F-domain. The present feasibility study opens the door to the development of a novel imaging probe for tumor malignancy using positron emission tomography as well as an optical imaging device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.