Abstract

A novel strategy to construct a visible-light-driven Z-scheme heterojunction catalyst was employed by crosslinking ZnAl-layered double hydroxide (ZnAl-LDH) nanosheets with the active phase on carbon nitride (g-C3N4) substrates via a polydopamine bridge (a similar "bridge" structure). In this paper, multiple optical and electrochemical detection methods indicated that the 0.5P-LDH_500CN photocatalyst demonstrated excellent visible-light absorption properties, photo-generated electron-hole separation ability and photocatalytic activity for p-nitrophenol under visible-light (> 420 nm), etc. A Z-scheme charge transfer mechanism via PDA bridge was proposed to achieve heterojunction charge separation. This mechanism involved the recombination of photo-induced electrons directly on the ZnAl-LDH_500 valence band through the PDA channel and the holes were captured at the conduction band energy level of the g-C3N4. The detection of active species, including O2-, h+ and OH, further proofed the Z-scheme charge transfer mechanism, which could be speculated that all active species affected the photocatalytic reaction with the order of h+ >OH >O2-. Meanwhile, this work also exposed that the formation of active phase in ZnAl-LDH could synergize with PDA to promote the application of visible-light-active photocatalysts based on g-C3N4 materials in high-efficiency energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.