Abstract

The increases in power flows and environmental constraints are forcing electricity utilities to install new equipment to enhance network operation. Some application of flexible AC transmission system (FACTS) technologies to existing high-voltage power systems has proved the use of FACTS technology may be a cost-effective option for power delivery system enhancements. Amongst various power electronic devices, the unified power flow controller (UPFC) device has captured the interest of researchers for its capability of regulating the power flow and minimizing the power losses simultaneously. Since for a cost-effective application of FACTS technology a proper selection of the number and placement of these devices is required, the scope of this paper is to propose a methodology, based on a multi-objective power flow and a genetic algorithm, able to identify the optimal number and location of UPFC devices in an assigned power system network for maximizing system capabilities, social welfare and to satisfy contractual requirements in an open market power. In order to validate the usefulness of the approach suggested herein, a case study using a IEEE 30-bus power system is presented and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call