Abstract

For the first time, dense continuous carbon fiber (Cf) reinforced (TiZrHfNbTa)C high-entropy ceramic (Cf/HEC) composites were rapidly prepared via in-situ reactive melt infiltration (RMI). A TiZrHfNbTa high-entropy alloy served as the cation source and carbon in Cf reinforced carbon matrix (Cf/C) preforms served as the anion source, and a (TiZrHfNbTa)C high-entropy ceramic phase with a near equimolar ratio was successfully formed. The results revealed that most of the TiZrHfNbTa high-entropy alloy reacted with the carbon matrix, and the harvested Cf/HEC composites exhibited an excellent bending strength (612.6 MPa) and low ablation rates. High reaction rates caused by ultra-high temperature and homogeneous distribution of elements in the high-entropy TiZrHfNbTa alloy significantly reduced the difference in reactivity with C among Ti, Zr, Hf, Nb, and Ta are considered to be the reasons for successful formation of (TiZrHfNbTa)C high-entropy ceramic with a near equimolar ratio in Cf/HEC composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call