Abstract

Nowadays, a small number of incretin mimics are used to treat type 2 diabetes mellitus (T2DM) due to their longer half-life. The present study aimed to introduce a novel method for producing the liraglutide precursor peptide (LPP) and developing a potentially new incretin mimic. Here, human αB-crystallin (αB-Cry) was ligated to the LPP at the gene level, and the gene construct was expressed in Escherichia coli with a relatively good efficiency. The hybrid protein (αB-lir) was then purified by a precipitation method followed by anion exchange chromatography. After that, the peptide was released from the carrier protein by a chemical cleavage method yielding about 70%. The LPP was then purified by gel filtration chromatography, and HPLC estimated its purity to be about 98%. Also, the molecular mass of the purified peptide was finally confirmed by mass spectroscopy analysis. Assessment of the secondary structures suggested a dominant α-helical structure for the LPP and a β-sheet rich structure for the hybrid protein. The subcutaneous injection of the LPP and the αB-lir hybrid protein significantly reduced the blood sugar levels in healthy and diabetic mice and stimulated insulin secretion. Also, the hybrid protein exerts its bioactivities more effectively than the LPP over a relatively longer period of time. The results of this study suggested a novel method for the easy and cost-effective production of the LPP and introduced a new long-acting incretin mimic that can be potentially used for the treatment of T2DM patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call