Abstract

Conventional rapid detection methods are difficult to identify or distinguish various pesticide residues at the same time. And sensor arrays are also limited by the complexity of preparing multiple receptors and high cost. To address this challenge, a single material with multiple properties is considered. Herein, we first found that different categories of pesticides have diverse regulatory behaviors on the multiple catalytic activities of Asp-Cu nanozyme. Thus, a three-channel sensor array based on the laccase-like, peroxidase-like, and superoxide dismutase-like activities of Asp-Cu nanozyme was constructed and successfully used for the discrimination of eight kinds of pesticides (glyphosate, phosmet, isocarbophos, carbaryl, pentachloronitrobenzene, metsulfuron-methyl, etoxazole, and 2-methyl-4-chlorophenoxyacetic acid). In addition, a concentration-independent model for qualitative identification of pesticides has been established, and 100% correctness was achieved in the recognition of unknown samples. Then, the sensor array also exhibited excellent interference immunity and was reliable for real sample analysis. It provided a reference for pesticide efficient detection and food quality supervision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call