Abstract
The global energy crisis is approaching due to rapid population growth and overexploitation of fossil fuels. Therefore, the development and use of new and renewable energy sources is already in the extreme urgency. This work developed a novel technology to efficiently produce renewable liquid bioenergy from discarded wastes, by effectively transforming sewage sludge into high-value medium chain fatty acids (MCFA). The maximum MCFA yield in the anaerobic sludge fermentation was revealed to be 10.6 times of control when utilizing sewage sludge with 1.78 mg-N/L free nitrous acid (FNA) pretreatment. The carbon flow from sewage sludge into MCFA in the fermentation system was significantly enhanced with appropriate levels (0.71–1.78 mg-N/L) of FNA pretreatment. Compared to FNA pretreatment, however, its direct addition severely inhibited total products (i.e., carboxylates and complex alcohols) generation because of the toxicity on live cells (decreasing to 8.3 %–13.9 %) in sludge. Kinetic models (one-substrate and two-substrate) were utilized to investigate the mechanism of MCFA promotion by FNA pretreatment on anaerobic sludge fermentation, in which linear relationship analysis between FNA-derived organic release and the fitted parameters were also performed. The results indicated that the conversion of refractory materials into rapidly bioavailable substrates for MCFA production contributed to increasing MCFA production rate and potential. Moreover, the relative abundances of functional microorganisms related to hydrolysis-acidification and chain elongation process increased under FNA pretreatment, further favoring the MCFA production. This study provides a novel and effective technology of sludge energy recovery that can achieve the next-generation sustainable sewage sludge management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.