Abstract

Biofilms of a mucoid clinical isolate of Pseudomonas aeruginosa (24 h; ca. 10(sup6) CFU/cm(sup2)) were established by immersion of polymer discs in nutrient broth cultures at 37(deg)C. Biofilms exposed for 30 min to various concentrations (0 to 3 mg/ml) of hydrogen peroxide or potassium monopersulfate were rinsed and shaken vigorously in sterile saline to detach loosely associated cells, and the residual viable attached population was quantified by a blot succession method on agar plates. Incorporation of copper and cobalt phthalocyanine catalysts within the polymers significantly enhanced the activity of these oxidizing biocides towards biofilm bacteria by several orders of magnitude. Biofilms established on the control discs resisted treatment with concentrations of either agent of up to 3 mg/ml. Enhancement through incorporation of a catalyst was such that concentrations of potassium monopersulfate of as low as 20 (mu)g/ml gave no recoverable survivors either on the discs or within the washings. Catalysts such as these will promote the formation of active oxygen species from a number of oxidizing agents such as peroxides and persulfates, and it is thought that generation of these at the surface-biofilm interface concentrates the antimicrobial effect to the interfacial cells and generates a diffusion pump which further provides active species to the biofilm matrix. The survivors of low-concentration treatments with these agents were more readily removed from the catalyst-containing discs than from the control discs. This indicated advantages gained in hygienic cleansing of such modified surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call