Abstract

The bacterial strain GCP5 was isolated from the gut of a bottom-dwelling fish Lepidocephalichthys guntea, that lives in the Magurmari River near North Bengal University in Siliguri, India. GCP5 was phylogenetically assigned to the Shigella genus using whole genome-based trees, k-mer analysis, the multilocus species tree (MLST), and single nucleotide polymorphism (SNP)-based trees, and the genetic makeup of the isolate was determined following assembly of the genome sequences and genome annotation with several bioinformatics tools. The presence of a complete package of general-secretory-pathway (gsp) genes, grouped in an operon identical to a well-characterized type II secretion system (T2SS), was confirmed by genome mining of Shigella sp. GCP5. The operon's gsp genes shared the most homology with Escherichia coli gsp genes. A few more high-pathogenicity islands (HPIs) in the GCP5 genome were validated using the pan-genomes analysis pipeline (PGAP) and island viewer. Several antibiotic-resistance genes were found in this genome, as well as the existence of key antibiotic efflux pump families, allowing for the creation of a gene network of several antibiotic efflux transporters. In addition, the genome contained genes specific for nickel transport, the nikABCD system, and the RND family transporter cusCFBA, which confers resistance to copper and silver by effluxing out Cu+ and Ag+ ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call