Abstract
Complex wavelet structural similarity (CW-SSIM) index has been recognized as a novel image similarity measure of broad potential applications due to its robustness to small geometric distortions such as translation, scaling and rotation of images. Nevertheless, how to make the best use of it in image classification problems has not been deeply investigated. In this paper, we introduce a series of novel image classification algorithms based on CW-SSIM and use handwritten digit recognition, and face recognition as examples for demonstration. Among the proposed approaches, the best compromise between accuracy and complexity is obtained by the CW-SSIM support vector machine based algorithms, which combines an unsupervised clustering method to divide the training images into clusters with representative images and a supervised learning method based on support vector machines to maximize the classification accuracy. Our experiments show that such a conceptually simple image classification method, which does not involve any registration, intensity normalization or sophisticated feature extraction processes, and does not rely on any modeling of the image patterns or distortion processes, achieves competitive performance with reduced computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.