Abstract
Improving the energy efficiency in heat exchanger networks (HENs) remains a significant industrial problem, specifically in energy-intensive operations. A particular method for such an objective is the modification of HENs at the equipment-use level, where structural changes take place and units within the network are moved, replaced and/or removed. This practice is usually known as retrofit. The objective of a retrofit is to maximize the heat recovery using the minimum modifications possible and minimum retrofit cost. Traditional retrofit techniques would normally consider one type of heat exchanger (based on the original network) with no additional design features (i.e., heat transfer enhancement technologies). The expansion of such alternatives is limited by practical use and availability of theoretical methods. In this context, the inclusion of high-performance heat exchangers such as plate heat exchangers (PHEs) has not been widely explored, even when their design and operational advantages are known. In this work, a new step-by-step automated HENs retrofit approach based on Pinch Analysis is proposed. The approach is possible to identify the best modification, its location within the network, and its cost simultaneously. Moreover, to increase energy savings, this work presents a strategy that seeks to utilize high efficiency heat exchangers such as plate heat exchangers for retrofit. A distinctive feature of this new method is the ability to handle different minimum approach temperatures, given the different types of exchangers, within the optimization of HENs. Three cases are studied using this methodology to quantify the potential benefits of including PHEs in HEN retrofits, via the analysis of the retrofit cost. Results are compared with a baseline consisting in the same network, where only Shell-and-Tube-Heat-Exchangers (STHXs) are used. In addition, the results demonstrate that this methodology is flexible enough to be applied in a wide range of retrofit problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.