Abstract
In this paper, a novel cut-strategy is presented for solving the problems of multiple biosequence alignment. Sequence comparison is the most important primitive operation for analyzing of the bioinformatics data. The most fundamental method for alignment of several biosequences is the dynamic programming (DP) technique. The DP method is capable of finding optimal alignments for a set of sequences. However, when the length of the sequences increased, the DP method is impracticable due to the computational complexity is extremely high. Therefore, a new method is proposed in this paper for reducing the computational cost of the DP technique. By recursively finding the structural features of the biosequences, the proposed method can divide the biosequences into very small alignment problem, which can be directly solved by DP, or other applicable methods that can produce the results of alignment faster. By utilizing the object-oriented programming technique, the proposed method also provides low memory space consumption during execution. Moreover, the proposed algorithm has been implemented in an x86 demonstration program, and compares the effective and efficient performance with other known method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.