Abstract
We present an automatic statistical intensity-based approach to extract the 3D cerebrovascular structure from time-of flight (TOF) magnetic resonance angiography (MRA) data. We use the finite mixture model (FMM) to fit the intensity histogram of the brain image sequence, where the cerebral vascular structure is modeled by a Gaussian distribution function and the other low intensity tissues are modeled by Gaussian and Rayleigh distribution functions. To estimate the parameters of the FMM, we propose an improved particle swarm optimization (PSO) algorithm, which has a disturbing term in speeding updating the formula of PSO to ensure its convergence. We also use the ring shape topology of the particles neighborhood to improve the performance of the algorithm. Computational results on 34 test data show that the proposed method provides accurate segmentation, especially for those blood vessels of small sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.