Abstract

State of health (SOH) is crucial to battery management system. However, SOH accuracy and reliability is difficult to be guaranteed owing to complex ageing mechanisms and driving conditions. This paper proposes a novel battery SOH prediction method based on gated recurrent unit (GRU) neural network for real-world vehicles. Firstly, real-vehicle operating data is extracted as well as cleaned and sliced to improve data reliability, then the Kalman filter and recursive least squares method are used to identify the ohmic internal resistance (OIR). The GRU neural network is established to realize the battery SOH prediction, and the average relative error of final validation set is less than 0.65 %. To further validate the reliability and applicability of the prediction method, four other vehicles data are set as input, and the SOH results indicate that all average relative errors are still within 4 %. This study demonstrates the feasibility of using OIR as a health factor for real-world vehicles, and also provides a new solution for accurately predicting battery SOH for real-world vehicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.