Abstract

In this paper, a novel state estimation approach based on the variational Bayesian adaptive Kalman filter (VBAKF) and road classification is proposed for a suspension system with time-varying and unknown noise covariance. Using the VB approach, the time-varying noise covariance can be inferred from the inverse-Wishart distribution and then optimized state estimation by the finite sampling posterior probability distribution function (PDF) of noise covariance and backward Kalman smoothing. In addition, a new road classification algorithm based on multi-objective optimization and the linear classifier is proposed to identify the unknown noise covariance. Simulation results for a suspension model with time-varying and unknown noise covariance show that the proposed approach has a higher performance in state estimation accuracy than other filters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call