Abstract

In the paper, a novel stabilized meshless method is presented for solving steady incompressible fluid flow problems. For this method, the standard Galerkin discretization is used to momentum equations, where the variational multiscale method is applied to mass conservation equation. Thus, the novel stabilized method can be regarded as a simplification of the variational multiscale element free Galerkin method, but it still retains the advantages of the variational multiscale element free Galerkin method. The present method allows equal linear basis approximation of both velocity and pressure and avoids the Ladyzhenskaya–Babuška–Breezi(LBB) condition. Meanwhile, it can automatically obtain the stabilization tensor. Three Stokes flow and two Navier–Stokes flow problems are applied to validate the accuracy and feasibility of the present method. It is shown that the present stabilized meshless method can guarantee the numerical stability and accuracy for incompressible fluid flow problems. Moreover, it can save computational cost evidently compared with variational multiscale element free Galerkin method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.