Abstract
Recent progress has been made in defect detection using methods based on deep learning, but there are still formidable obstacles. Defect images have rich semantic levels and diverse morphological features, and the model is dynamically changing due to ongoing learning. In response to these issues, this article proposes a shunt feature fusion model (ST-YOLO) for steel-defect detection, which uses a split feature network structure and a self-correcting transmission allocation method for training. The network structure is designed to specialize the process of classification and localization tasks for different computing needs. By using the self-correction criteria of adaptive sampling and dynamic label allocation, more sufficiently high-quality samples are utilized to adjust data distribution and optimize the training process. Our model achieved better performance on the NEU-DET datasets and the GC10-DET datasets and was validated to exhibit excellent performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.