Abstract

BackgroundAngiotensin-converting enzyme (ACE) (EC 4.15.1) metabolizes many biologically active peptides and plays a key role in blood pressure regulation and vascular remodeling. Elevated ACE levels are associated with different cardiovascular and respiratory diseases.Methods and ResultsTwo Belgian families with a 8-16-fold increase in blood ACE level were incidentally identified. A novel heterozygous splice site mutation of intron 25 - IVS25+1G>A (c.3691+1G>A) - cosegregating with elevated plasma ACE was identified in both pedigrees. Messenger RNA analysis revealed that the mutation led to the retention of intron 25 and Premature Termination Codon generation. Subjects harboring the mutation were mostly normotensive, had no left ventricular hypertrophy or cardiovascular disease. The levels of renin-angiotensin-aldosterone system components in the mutated cases and wild-type controls were similar, both at baseline and after 50 mg captopril. Compared with non-affected members, quantification of ACE surface expression and shedding using flow cytometry assay of dendritic cells derived from peripheral blood monocytes of affected members, demonstrated a 50% decrease and 3-fold increase, respectively. Together with a dramatic increase in circulating ACE levels, these findings argue in favor of deletion of transmembrane anchor, leading to direct secretion of ACE out of cells.ConclusionsWe describe a novel mutation of the ACE gene associated with a major familial elevation of circulating ACE, without evidence of activation of the renin-angiotensin system, target organ damage or cardiovascular complications. These data are consistent with the hypothesis that membrane-bound ACE, rather than circulating ACE, is responsible for Angiotensin II generation and its cardiovascular consequences.

Highlights

  • Angiotensin I-converting enzyme (ACE) is a Zn2+ carboxydipeptidase enzyme which transforms angiotensin I in angiotensin II, a potent vasoconstrictor, as well as other biologically active peptides

  • We describe a novel mutation of the Angiotensin-converting enzyme (ACE) gene associated with a major familial elevation of circulating ACE, without evidence of activation of the renin-angiotensin system, target organ damage or cardiovascular complications

  • These data are consistent with the hypothesis that membrane-bound ACE, rather than circulating ACE, is responsible for Angiotensin II generation and its cardiovascular consequences

Read more

Summary

Introduction

Angiotensin I-converting enzyme (ACE) is a Zn2+ carboxydipeptidase enzyme which transforms angiotensin I in angiotensin II, a potent vasoconstrictor, as well as other biologically active peptides. Through this metabolic process, ACE plays a key role in the regulation of blood pressure and in the development of vascular pathology and remodeling [1,2,3]. Somatic original ACE protein is constituted of 1306 aminoacids, including the peptide signal (position 1 to 29) [6], which is removed upon insertion of the enzyme in the plasma membrane. Angiotensin-converting enzyme (ACE) (EC 4.15.1) metabolizes many biologically active peptides and plays a key role in blood pressure regulation and vascular remodeling. Elevated ACE levels are associated with different cardiovascular and respiratory diseases

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.