Abstract

This paper aims at developing a novel spiral machining technique for four- or five-axis milling of blades. The main contributions are twofold. First, detailed algorithms are presented to model the blade surface with the idea that it can be separated into four patches, i.e., the pressure surface, the suction surface, the leading edge surface, and the trailing edge surface. The G1 continuity across the boundary of each patch is considered. Second, based on the four patches modeled, the key routine of a new spiral machining method is further addressed in detail. It is carried out by machining the pressure and suction surfaces actually whereas passing by the leading and trailing edges in air cut. Experimental results show that the proposed methods can improve the machining quality and avoid overcut near the leading and trailing edges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.