Abstract

With the rapid development of wireless communications technology, the problem of scarcity of spectrum resources is becoming serious. Cognitive radio (CR) which is an effective technology to improve the utilization of spectrum resources is getting more and more attention. Spectrum sensing is a key technology in cognitive radio. Wideband spectrum sensing (WBSS) can help secondary users (SUs) find more spectrum holes. However, for the traditional energy detection (ED) algorithm, when the signal-to-noise ratio (SNR) of the primary user (PU) is low, the detection performance is extremely poor owing to the single frequency point detection method. Therefore, the concept of spectrum correlation is proposed. Spectrum correlation algorithm uses the detection window to realize joint detection of multiple frequency points which can improve performance. This paper focuses on how to make the best of spectrum correlation to ensure the detection performance for low SNR signals. We propose an adaptive detection window (ADW) method, whose detection window is adaptively selected based on the estimated SNR of signal. The method can be directly used for wideband spectrum sensing when the approximate position of each signal and its estimated SNR are known. In this context, to show the robustness of the ADW method, a simulation of the sensitivity of the ADW method to the SNR estimation error is performed. Meanwhile, simulations of methods comparison demonstrate that the proposed ADW method outperforms the commonly used iterative energy detection method, frequency correlation methods and histogram-based segmentation method by far.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.