Abstract
Metal-organic frameworks (MOFs) are promising candidates for a wide range of applications, and spectroscopic techniques are important tools for analyzing their structures and properties. Here, we propose a novel and general scattering spectroscopic approach to study various MOFs such as zeolitic imidazolate frameworks (ZIF-67 and ZIF-8), HKUST-1, Co-based MOF (Co-MOF), and Ni-based MOF (Ni-MOF) based on their inherent Mie scattering properties. We show that by using a dark-field microscope, the inherent scattering colors and spectra can be obtained, which are mainly from the high-order magnetic and electric resonant modes. The scattering capacities are dependent on the chemical structures for producing polarized charges and internal circular displacement currents. Additionally, all the MOFs are capable of responding to solvent guests due to their high porosity, and the scattering peaks are in a linear correlation with solvent refractive indices, displaying scattering solvatochromic behaviors. Our results open up a powerful and universal avenue for visually studying the host-guest interactions in MOFs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.