Abstract

The goal of current research is to peruse the influences of magnetic field and nonlinear radiation on stagnation-point flow of nanofluid past a stretching surface. The Joule heating and viscous dissipation properties are considered for analysis in present work. The spectral relaxation numerical approach is implemented to solve the principal equations of the problem. Also, the influences of nanoparticles thermophoretic diffusion and Brownian motion, as well as Prandtl, Eckert, Lewis, and Biot numbers are analyzed and discussed in details. As a main result, it can be concluded that by increasing Prandtl number the temperature profile reduces for different values of radiation parameter. Furthermore, the results show that the nanofluid temperature profile rises with increase of Lewis number. In addition, the findings reveal that increasing the strength of the magnetic field affects the temperature and concentration of nanofluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.