Abstract
Accurate identification of cacti, whether seen as an indicator of ecosystem health or an invasive menace, is important. Technological improvements in hyperspectral remote sensing systems with high spatial resolutions make it possible to now monitor cacti around the world. Cacti produce a unique spectral signature because of their morphological and anatomical characteristics. We demonstrate in this paper that we can leverage a reflectance dip around 972 nm, due to cacti’s morphological structure, to distinguish cacti vegetation from non-cacti vegetation in a desert landscape. We also show the ability to calculate two normalized vegetation indices that highlight cacti. Furthermore, we explore the impacts of spatial resolution by presenting spectral signatures from cacti samples taken with a handheld field spectroradiometer, drone-based hyperspectral sensor, and aerial hyperspectral sensor. These cacti indices will help measure baseline levels of cacti around the world and examine changes due to climate, disturbance, and management influences.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.