Abstract

A wireless, wearable Doppler ultrasound offers a new paradigm for linking physiology to resuscitation medicine. To this end, the image analysis of simultaneously-acquired venous and arterial Doppler spectrograms attained by wearable ultrasound represents a new source of hemodynamic data. Previous investigators have reported a direct relationship between the central venous pressure (CVP) and the ratio of the internal jugular-to-common carotid artery diameters. Because Doppler power is directly related to the number of red cell scatterers within a vessel, we hypothesized that (1) the ratio of internal jugular-to-carotid artery Doppler power (V/APOWER) would be a surrogate for the ratio of the vascular areas of these two vessels and (2) the V/APOWER would track the anticipated CVP change during simulated hemorrhage and resuscitation. To illustrate this proof-of-principle, we compared the change in V/APOWER obtained via a wireless, wearable Doppler ultrasound to B-mode ultrasound images during a head-down tilt. Additionally, we elucidated the change in the V/APOWER during simulated hemorrhage and transfusion via lower body negative pressure (LBNP) and release. With these Interesting Images, we show that the Doppler V/APOWER ratio qualitatively tracks anticipated changes in CVP (e.g., cardiac preload) which is promising for both diagnosis and management of hemodynamic unrest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call