Abstract
Left ventricular stroke work index (LVSWI) and afterload-related cardiac performance (ACP) consider left ventricular (LV) afterload and could be better prognosticators in septic cardiomyopathy. However, their invasive nature prevents their routine clinical applications. This study aimed to investigate (1) whether a proposed speckle-tracking echocardiography parameter, Pressure-Strain Product (PSP), can non-invasively predict catheter-based LVSWI, ACP and serum lactate in an ovine model of septic cardiomyopathy; and (2) whether PSP can distinguish the sub-phenotypes of acute respiratory distress syndrome (ARDS) with or without sepsis-like conditions. Sixteen sheep with ARDS were randomly assigned to either (1) sepsis-like (n = 8) or (2) non-sepsis-like (n = 8) group. Each ARDS and sepsis-like condition was induced by intravenous infusion of oleic acid and lipopolysaccharide, respectively. Pulmonary artery catheter-based LVSWI (the product of stroke work index, mean arterial pressure and .0136), ACP (the percentage of cardiac output measured to cardiac output predicted as normal) and serum lactate were measured simultaneously with transthoracic echocardiography. Two PSP indices were calculated by multiplying the mean arterial blood pressure and either global circumferential strain (PSPcirc) or radial strain (PSPrad). PSPcirc showed a significant correlation with LVSWI (r2 = .66, p < .001) and ACP (r2 = .82, p < .001) in the sepsis-like group. Although PSP could not distinguish subphenotypes, PSPcirc predicted LVSWI (AUC .86) and ACP (AUC .88), and PSPrad predicted serum lactate (AUC .75) better than LV ejection fraction, global circumferential and radial strain. A novel PSP has the potential to non-invasively predict catheter-based LVSWI and ACP, and was associated with serum lactate in septic cardiomyopathy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.