Abstract
Prediction methods are important for many applications. In particular, an accurate prediction for the total number of cases for pandemics such as the Covid-19 pandemic could help medical preparedness by providing in time a sucient supply of testing kits, hospital beds and medical personnel. This paper experimentally compares the accuracy of ten prediction methods for the cumulative number of Covid- 19 pandemic cases. These ten methods include three types of neural networks and extrapola- tion methods based on best fit quadratic, best fit cubic and Lagrange interpolation, as well as an extrapolation method proposed by the second author. We also consider the Kriging and inverse distance weighting spatial interpolation methods. We also develop a novel spatiotemporal prediction method by combining temporal and spatial prediction methods. The experiments show that among these ten prediction methods, the spatiotemporal method has the smallest root mean square error and mean absolute error on Covid-19 cumulative data for counties in New York State between May and July, 2020.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.