Abstract
X-ray angiograms, which suffer from low-contrast and noise, need to be improved by both the image enhancement and denoising techniques. However, the goals of these two tasks usually conflict, which makes it difficult to efficiently combine the enhancement and denoising in one scheme. To solve this problem, we propose a novel spatial-frequency filtering (SFF) scheme to simultaneously enhance and denoise low-quality X-ray cardiovascular angiogram images. The proposed scheme includes three key components: Firstly, a relative total variation method is employed as a guide filter to separate an input image into two parts, including the base layer with strong structures and the detail layer with weak structures and noise. Then the base layer is enhanced by a proposed improved histogram equalization (IHE) method while the detail layer is extracted by a short-time Fourier transform and is further enhanced by using a proposed adaptive correction parameter. Finally, the improved image is the combination of results obtained by the two components. Both quantitative and qualitative results of experiments on real-world low-quality X-ray angiogram images demonstrate that the proposed method outperforms the state-of-the-arts in terms of contrast enhancement, structure preservation, and noise reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.