Abstract
Traffic flow forecasting is indispensable in today’s society and regarded as a key problem for Intelligent Transportation Systems (ITS), as emergency delays in vehicles can cause serious traffic security accidents. However, the complex dynamic spatial-temporal dependency and correlation between different locations on the road make it a challenging task for security in transportation. To date, most existing forecasting frames make use of graph convolution to model the dynamic spatial-temporal correlation of vehicle transportation data, ignoring semantic similarity between nodes and thus, resulting in accuracy degradation. In addition, traffic data does not strictly follow periodicity and hard to be captured. To solve the aforementioned challenging issues, we propose in this article CRFAST-GCN, a multi-branch spatial-temporal attention graph convolution network. First, we capture the multi-scale (e.g., hour, day, and week) long- short-term dependencies through three identical branches, then introduce conditional random field (CRF) enhanced graph convolution network to capture the semantic similarity globally, so then we exploit the attention mechanism to captures the periodicity. For model evaluation using two real-world datasets, performance analysis shows that the proposed CRFAST-GCN successfully handles the complex spatial-temporal dynamics effectively and achieves improvement over the baselines at 50% (maximum), outperforming other advanced existing methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.