Abstract
Tartrate stabilization remains a necessary step in commercial wine production to avoid the precipitation of crystals in bottled wine. The conventional refrigeration method to prevent crystallization of potassium bitartrate is time-consuming, energy-intensive, and involves a filtration step to remove the sediment. Nevertheless, it is still the most used stabilization method by winemakers. This work exploits for the first time an alternative to traditional cold stabilization that explores the potential of carefully tailored surface coatings obtained by plasma polymerization. Coatings containing amine functional groups were most potent in binding and removing potassium in heat-unstable wines. In contrast, carboxyl acid groups rich surfaces had the most significant impact on heat-stabilized wines. The results of this study demonstrate that surfaces with carefully designed chemical functionalities can remove tartaric acid from wine and induce cold stabilization. This process can operate at higher temperatures, reducing the need for cooling facilities, saving energy, and improving cost-effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.