Abstract

In this paper, the interaction of a three-level $ \Lambda$ -configration atom and a one-mode quantized electromagnetic cavity field has been studied. The detuning parameters, the Kerr nonlinearity and the arbitrary form of both the field and intensity-dependent atom-field coupling have been taken into account. The wave function when the atom and the field are initially prepared in the excited state and coherent state, respectively, by using the Schrodinger equation has been given. The analytical approximation solution of this model has been obtained by using the modified homotopy analysis method (MHAM). The homotopy analysis method is mentioned summarily. MHAM can be obtained from the homotopy analysis method (HAM) applied to Laplace, inverse Laplace transform and Pade approximate. MHAM is used to increase the accuracy and accelerate the convergence rate of truncated series solution obtained by the HAM. The time-dependent parameters of the anti-bunching of photons, the amplitude-squared squeezing and the coherent properties have been calculated. The influence of the detuning parameters, Kerr nonlinearity and photon number operator on the temporal behavior of these phenomena have been analyzed. We noticed that the considered system is sensitive to variations in the presence of these parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call