Abstract
We present two novel additions to the semianalytic solution of Lyα radiative transfer in spherical geometry: (1) implementation of the correct boundary condition for a steady source, and (2) solution of the time-dependent problem for an impulsive source. For the steady-state problem, the solution can be represented as a sum of two terms: a previously known analytic solution of the equation with mean intensity J = 0 at the surface, and a novel, semianalytic solution which enforces the correct boundary condition of zero-ingoing intensity at the surface. This solution is compared to that of the Monte Carlo method, which is valid at arbitrary optical depth. It is shown that the size of the correction is of order unity when the spectral peaks approach the Doppler core and decreases slowly with line center optical depth, specifically as , which may explain discrepancies seen in previous studies. For the impulsive problem, the time, spatial, and frequency dependence of the solution are expressed using an eigenfunction expansion in order to characterize the escape time distribution and emergent spectra of photons. It is shown that the lowest-order eigenfrequency agrees well with the decay rate found in the Monte Carlo escape time distribution at sufficiently large line center optical depths. The characterization of the escape time distribution highlights the potential for a Monte Carlo acceleration method, which would sample photon escape properties from distributions rather than calculating every photon scattering, thereby reducing computational demand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.